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SUMMARY

The simulation of two-phase �ow of oil and water in inhomogeneous porous media represents a great
challenge because rock properties such as porosity and permeability can change abruptly throughout
the reservoir. This fact can produce velocities which vary several orders of magnitude within very
short distances. The presence of complex geometrical features such as faults and deviated wells is quite
common in reservoir modelling, and unstructured mesh procedures, such as �nite elements (FE) and
�nite volume (FV) methods can o�er advantages relative to standard �nite di�erences (FD) due to their
ability to deal with complex geometries and the easiness of incorporating mesh adaptation procedures.
In �uid �ow problems FV formulations are particularly attractive as they are naturally conservative in
a local basis. In this paper, we present an unstructured edge-based �nite volume formulation which is
used to solve the partial di�erential equations resulting from the modelling of the immiscible displace-
ment of oil by water in inhomogeneous porous media. This FV formulation is similar to the edge-based
�nite element formulation when linear triangular elements are employed. Flow equations are modelled
using a fractional �ux approach in a segregated manner through an IMplicit Pressure-Explicit Satura-
tion (IMPES) procedure. The elliptic pressure equation is solved using a two-step approach and the
hyperbolic saturation equation is approximated through an arti�cial di�usion method adapted for use on
unstructured meshes. Some representative examples are shown in order to illustrate the potential of the
method to solve �uid �ows in porous media with highly discontinuous properties. Copyright ? 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main objective of the simulation of two-phase �ows in porous media is to properly depict
the complex physical and chemical �uid �ow interactions in order to correctly predict the �uid
�ow displacement within heterogeneous reservoir rocks. In typical rock formations, porous
media heterogeneities range from the pore level to the reservoir scale [1]. Rock properties, such
as porosity and permeability may change signi�cantly from one region to another, su�ering
strong discontinuous variations that generate velocity �elds which may vary several orders of
magnitude over relatively short distances. Due to this fact, the simulation of �uid �ow of oil
and water in inhomogeneous porous media generally poses a great challenge for most of the
numerical tools available.
One of the most popular methodologies used to describe the �uid �ow in petroleum reser-

voir simulation is the IMplicit Pressure-Explicit Saturation (IMPES) procedure [1–3]. In this
technique, a sequential time stepping procedure is used to split the computation of the pressure
�eld from the saturation �eld. In the IMPES method, initially, the pressure equation is solved
implicitly from an initial saturation distribution, and then, velocities are computed from this
pressure �eld. In sequence, the velocity �eld is used as an input for the saturation equation,
which is �nally solved explicitly. The process is repeated until the end of the analysis.
The pressure �eld is governed by a parabolic=elliptic-type equation that can have strong

discontinuous coe�cients (i.e. permeabilities) and, in general, the saturation equation is similar
to a convection–di�usion-type equation, in which the di�usion coe�cients are associated to
capillary e�ects. In many situations, capillarity is small and can be neglected. In such cases,
the saturation equation behaves essentially as a �rst-order non-linear hyperbolic conservation
law.
Various numerical methods have been devised to solve the partial di�erential equations

associated to the IMPES procedure. The most commonly used are the �nite di�erence (FD)
methods which are the standard in petroleum reservoir industry, because they are fast, accurate
and simple to implement [1, 2]. Some of the major drawbacks related to FD are their limited
ability to properly discretize complex geometries which are common in reservoir modelling,
such as, faults, channels and deviated wells, and the di�culty to incorporate automatic mesh
adaptive procedures due to the limitations imposed by structured meshes.
Over the last decades, much e�ort has been put in methods that make use of unstructured

meshes, such as the �nite element (FE) methods and �nite volume (FV) methods due the fact
that these methods allow for better modelling of complex geometrical features and because
they can easily incorporate mesh adaptive procedures. Finite volume methods are particularly
attractive as they conserve mass, globally and locally. Apart from the traditional FD, FE and
FV methods, many variations and combinations of numerical methods have been devised for
reservoir simulation.
Mass conservative schemes, such as the mixed �nite element method (MFEM) and �ux

continuous �nite volumes (FCFV) have been extensively studied in literature [1, 4–8]. In
the MFEM, pressure and velocities are approximated simultaneously with the same order of
accuracy, and the saturation equation is generally solved using some shock capturing scheme
[1, 4]. The recently developed FCFV are de�ned by assuming continuous pressures and �uxes
across control volumes (CV) interfaces [5–8]. Both methods are capable of handling full
tensors pressure equations in highly non-homogeneous porous media using structured or un-
structured meshes. Another interesting conservative approach involves the so-called control
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volume function approximation method (CVFA), in which functions of di�erent types are
used to approximate pressure and velocity independently, using arbitrary mesh types [3, 9]. In
these references, the saturation equation is solved through an upwind-type method.
Galerkin-type methods have also been designed to solve �uid �ows in porous media [10, 11].

One procedure that has been originally developed for the solution of miscible �ows in het-
erogeneous and anisotropic media involves the direct use of the Galerkin FE method to solve
the pressure equation, and a velocity post-processing technique to reinforce mass conservation
[10]. In this approach, the saturation equation has been solved via a streamline upwind Petrov
Galerkin (SUPG) method.
In the last years, combinations of �nite elements and �nite volumes (FEFVM) have also

been used in literature [12, 13]. In these methods, mixed �nite elements or Galerkin �nite
elements with some velocity recovery are used to solve the pressure–velocity problem, and
the saturation equation is solved by node-centred [12], or cell-centred [13] conservative �nite
volumes. In the formulation used in Reference [13], the �uid pressure �eld is computed
using the standard Galerkin FE method with �uid velocities being constant within each �nite
element. The FV grid is then constructed using a median dual sub-grid, taking advantage of
the fact that �uid velocities, which are discontinuous between two elements of the mesh, are
continuous through CV faces of the dual grid.
In this work, we present a node-centred conservative fully �nite volume formulation in

which median dual CV (Donald’s dual) are used with an edge-based data structure [14–18]
in such a way that the geometrical coe�cients are associated to the edges and nodes of
the primal mesh. This formulation has been chosen due to the fact that node-centred FV
schemes are usually superior to cell-centred schemes in terms of memory usage [14, 15], and
because edge-based data structures are known to be more computationally e�cient than their
element-based counterparts [15].
This FV formulation, which has been recently developed for the solution of two-dimensional

two-phase �ow problems in an IMPES procedure for homogeneous porous media [16], is fur-
ther improved to include the capability of simulating two-phase �ows in heterogeneous porous
media. In our approach, the �nite volume method is used to accurately solve both, the elliptic
pressure equation and the hyperbolic saturation equation. For the solution of the pressure equa-
tion, we devise an alternative way of computing continuous di�usive �uxes through CV faces
in heterogeneous media with strong discontinuous coe�cients by a modi�cation of Crump-
ton’s two-step approach [17]. The hyperbolic saturation equation is solved using a higher
order arti�cial di�usion scheme which is adapted for use with multidimensional unstructured
meshes, and that combines adaptively, second- and fourth-order di�usion terms controlled by
a saturation switch [16, 19–21].

2. MATHEMATICAL FORMULATION

In this section, we brie�y describe the governing equations for incompressible, immiscible
two-phase �ows of water and oil through rigid porous media. This model (which can be
directly extended to miscible, three-phase �ow) is obtained combining Darcy’s law with the
mass conservation equation for each phase. The formulation adopted here has been successfully
used by many authors [1–4, 9, 12, 13, 16], though it is still not commonly used in commercial
reservoir simulators.
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First, we assume that the phase velocities obey the Darcy’s law, which, ignoring gravita-
tional e�ects can be written for phase i, as

vi=−�
˜ i

∇Pi (1)

where the phase mobility tensor is de�ned as

�
˜ i
= K
˜

ki
�i

or �
˜ i
= K
˜
�i (2)

Here, K
˜
denotes the absolute permeability tensor of the rock, �i= ki=�i is the scalar phase

mobility, with ki being the phase relative permeability and �i the phase viscosity. Henceforth,
we will assume incompressible medium and �uids. We will also ignore the capillary pressure
and assume that P=Pw =Po, where (w) and (o) stand, respectively, for the wetting (water)
and the non-wetting (oil) phases. Additionally, conservation of mass for each phase i can be
written as

−∇ · (�ivi) + qi= @(��iSi)@t
(3)

In (3), � is the porosity, i.e. fraction of the rock which can be occupied by �uids, qi denotes
sources or sinks, �i the phase density and Si the saturation of phase i, which represents the
percentage of the available pore volume occupied by this phase. Due to this last de�nition,
we can write

So + Sw =1 (4)

Combining Equations (1)–(4), and after some algebraic manipulation we obtain the follow-
ing pressure equation:

∇ · (�
˜
∇P)=−Q or ∇ · v=Q (5)

where �
˜
= �
˜ o
+ �
˜w
is the total �uid mobility tensor, v= vo + vw =−�

˜
∇P is the total velocity

�eld and Q=Qw + Qo, with Qi=(qi=�i), is the total injection or production speci�c rate.
By introducing the fractional �ow function fi= �i=(�o +�w), we can also derive a hyperbolic
equation for the water saturation, which can be written as

�
@Sw
@t

+∇ · Fw(Sw)=Qw (6)

The term Fw =fwv is the �ux function which is dependent on the water-phase satu-
ration. As it can be seen, the pressure and saturation �elds are connected through the total
velocity v.

3. FINITE VOLUME FORMULATION

In the present work, we have adopted a node-centred, median dual CV technique, in which
the coe�cients necessary to our calculation are associated to the edges and to the nodes of
the mesh [14–18]. These edge and node coe�cients are pre-computed in a pre-processing
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stage from the more traditional element-based data structure which is commonly used in the
�nite element method [22].
Even though, there is, in principle, no restriction to the shape of the elements utilized to

discretize the spatial domain, it is important to keep in mind that edge-based FV schemes
are only linearly preserving (i.e. they exactly represent a linear �eld) on triangular (2D),
tetrahedral (3D) or structured quadrilateral (2D) and hexahedral (3D) meshes [23]. Therefore,
extra care must be taken when using di�erent element types, especially when considering
distorted meshes.
The median dual CV adopted are built connecting centroids of elements to the middle point

of the edges that surround a speci�c mesh node. In edge-based node-centred schemes, �uxes
are usually integrated on the dual mesh through one or more loops over the edges, and the
computational cost is, essentially, proportional to the number of edges of the mesh. In order to
properly handle material discontinuities, we perform the integration over the whole domain in
a sub-domain by sub-domain approach, where a sub-domain is de�ned by a group of elements
that share the same physical properties such as permeability and porosity.
Node-centred �nite volume schemes in which physical properties are uniform in the ele-

ments of the primal mesh are named ‘cell distributed schemes’ in opposition to the so-called
‘point distributed schemes’ in which properties are uniform inside the CV of the dual mesh
[7, 8, 24].
In this work, we have chosen to use the cell distributed methodology due to the easiness of

associating rock properties to sub-domains which encompass groups of elements (e.g. triangles
or tetrahedral) that naturally �t to reservoir bed boundaries.
In what follows, we will show how to derive an edge-based FV method which is naturally

capable of handling heterogeneous materials.

3.1. Implicit pressure equation

In order to obtain our discrete equations, we can write

∇ · v=Q (7)

Integrating (7) over the domain and using the Gauss–Green theorem, yields∫
�
v · n@�=

∫
�
Q@� (8)

Finally, for a node I of the mesh, we can write the discrete form of (8), as∑
LI(�)
v�IJL ·CIJL +

∑
LI(�)
v�IJL ·DIJL =QIVI (9)

In (9), VI is the volume of the CV surrounding node I, the upper index � represents
approximations on the middle of every edge IJL of the mesh which is connected to node I
and � refers only to boundary edges connected to that node and the summation is performed
over the edges (LI) connected to node I. The geometrical coe�cients CIJL and DIJL are de�ned
as

CIJL = AK+1nK+1 + AKnK

DIJL = ALnL
(10)
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Figure 1. 2-D internal CV.

Figure 2. 2-D boundary CV.

In (10), AK =TLK , AK+1 =TLK+1 and AL=TLL are the areas of the CV faces associated to
the normals nK , nK+1 and nL, respectively, and T is the thickness of the domain. Figures 1
and 2 show some details of the internal and boundary CV and their geometrical parameters
for a typical triangular mesh. Further details can be found in References [16, 25].
In order to approximate the mid-edge gradients=velocities required in (9), di�erent strategies

can be devised [26]. A classical approach involves using a simple two-point approximation in
which mid-edge velocities are formally second-order accurate only if the media is isotropic
and the straight lines that connects two adjacent nodes and the CV faces are orthogonal to
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each other as in the case of the Voronoi tessellations [6, 7]. Schemes using such approaches
are equivalent to the so-called control volume �nite di�erence methods (CVFD).
In the present paper, we use a di�erent approach which has been originally devised by

Crumpton et al. [17] for the discretization of di�usion terms in the Navier–Stokes equations.
In this approach, in order to obtain the �nal discrete system of equations, we �rst determine
nodal gradients as functions of the discrete pressure �eld and then, we use these gradients to
compute the elliptic terms in a second step [14, 16–18, 25, 27].
Again, we make use of the Gauss–Green theorem to integrate the pressure gradient at node

I, obtaining ∫
�I

∇PI@�I =
∫
�I
PIn@� (11)

Assuming that the average gradient in the CV can be de�ned as

�∇PIVI =
∫
�I

∇PI@�I (12)

we can write the discrete form of (11) as

∇PIVI =
(∑
LI(�)
P�IJLCIJL +

∑
LI(�)
P�IJLDIJL

)
(13)

Further, we must adopt the following linear edge approximations:

P�IJL =
PI + PJL
2

and P�IJL =
5PI + PJL

6
(14)

Inserting (14) in (13), we obtain

∇PI = 1
VI

[∑
LI(�)
CIJL

(PI + PJL)
2

+
∑
LI(�)
DIJL

(5PI + PJL)
6

]
(15)

The boundary term (P�IJL) de�ned in (14) assumes a piecewise linear interpolation for
boundary �uxes similar to a FE-type approximation, being formally second-order accurate in
space when linear triangles are used [15]. A simpler methodology which is commonly used
in FV formulations is to consider a piecewise constant approximation for the boundary �ux
term, i.e. P�IJL =PI . This last approach, which is independent of the type of the elements used
for the spatial discretization, can be used with some loss of accuracy along the boundary faces
[14–16].

3.1.1. Heterogeneous porous media. For the heterogeneous media case, �uxes de�nition over
the edges located at the interface between di�erent types of rocks can be ambiguous [11].
If gradients computed as described in (15) are directly used for �ux computations, an in-
consistent �ux would be obtained along CV faces adjacent to rock discontinuities. In order
to circumvent this problem, we recover gradients in a sub-domain by sub-domain approach.
First we assume that rock properties, such as porosity and permeability are associated to
sub-domains. For each physical sub-domain, we store a list of edges and nodes and their
associated geometrical coe�cients. Considering the mesh shown in Figure 3, it is necessary
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Figure 3. 2-D CV split by two di�erent rock types.

to include new geometrical coe�cients DIJL =ALnL and DIJM =AMnM , which are related to
internal boundary edges, in order to correct reconstruct gradients and �uxes in a particular
sub-domain. These coe�cients allow for a second-order recovery of gradients for each physi-
cal sub-domain of the problem, allowing for a discontinuous �ux computation. Therefore, for
heterogeneous porous media, we can rewrite (15) as

∇P�RI =
1
V�RI

[ ∑
LI(�R)

C�RIJL
(PI + PJL)

2
+
∑
LI(�RE )

D�RIJL
(5PI + PJL)

6
+
∑
LI(�RI )

D�RIJL
(5PI + PJL)

6

]
(16)

In (16), ∇P�RI is the nodal gradient and V�RI is the CV of a node I associated to the sub-
domain �R, and C�RIJL and D

�R
IJL refer to the geometrical coe�cients of the edge IJL associated

to the same sub-domain �R. Finally, note that in this sub-domain approach, D�RIJL refers to
both, external and internal boundary edges, and �RE and �RI refer, respectively, to loops over
external boundary edges and edges between multiple domains.
After the computation of nodal gradients, a common choice in edge-based schemes involves

repeating the same simple strategy used to compute mid-edge-pressures PIJL (i.e. the arith-
metic mean) of (13) in order to compute mid-edge gradients, producing a two-layer stencil
for the approximation of the elliptic terms [14, 26]. However appealing this strategy may look,
it must be strongly avoided as it can be proved that, for orthogonal equally spaced meshes
(e.g. uniform structured quadrilateral or hexahedral ones), it implies that the values computed
at a given node are uncoupled from the values of those nodes directly connected to it, lead-
ing to leap-frog modes commonly known as ‘checker-boarding’ or ‘odd–even’ oscillations,
[14, 16, 25, 26]. Even if non-uniform unstructured triangular or tetrahedral meshes are used in
this approach, the simple adoption of this extended stencil and the weak coupling with the
directly connected nodes leads to some loss of accuracy and reduction of convergence rates
of the resulting scheme [14]. In fact, Sv	ard and Nordstr	om [26], have proved that this scheme
is an inconsistent approximation for the Laplacian (di�usive) operator on general triangular
meshes.
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In order to overcome such weaknesses, mid-edge gradients and correspondingly velocities
must be computed in a di�erent manner. A much better approach, which was originally pro-
posed by Crumpton et al. [17], introduces a local compact stencil for the gradient computation
along the edge direction, avoiding the odd–even decoupling and recovering second-order ac-
curacy for that part of the gradient [14]. This strategy, which has been recently used for
the solution of �uid �ows in homogeneous porous media [14, 16], involves a local frame of
reference, in which one axis is placed along the edge direction (P), and another axis (N ) is
orthogonal to the direction (P) as stated in (17)

∇P�RIJL =∇P�R(N )IJL +∇P�R(P)IJL (17)

The component of the gradient parallel to the edge direction ∇P�R(P)IJL is replaced by a local
second-order central di�erence approximation ∇P�R(P∗)

IJL , as follows:

∇P�∗
R

IJL =∇P�R(N )IJL +∇P�R(P∗)
IJL (18)

where

∇P�R(P∗)
IJL =

(PJL − PI)
|
IJL |

LIJL (19)

In (19), |
IJL | and LIJL = IJL=|
IJL | are, respectively, the length and the unity vector of the
edge IJL.
From (17), the normal component of the gradient associated to the edge can be computed

as

∇P�R(N )IJL =∇P�RIJL − ∇P�R(P)IJL (20)

where the gradient along the edge direction is given by

∇P�R(P)IJL =(∇P�RIJL · LIJL)LIJL (21)

with

∇P�RIJL =
∇P�RI +∇P�RJL

2
(22)

Inserting (21) in (20) yields

∇P�R(N )IJL =∇P�RIJL − (∇P�RIJL · LIJL)LIJL (23)

Inserting (19) and (23) in (18), we have

∇P�∗
R

IJL =∇P�RIJL − (∇P�RIJL · LIJL)LIJL +
(PJL − PI)

|
IJL |
LIJL (24)

De�ning the continuous ‘hybrid’ mid-edge velocity as

v�
∗
R

IJL =−�
˜
�R
IJL

∇P�∗
R

IJL (25)

in which, the term hybrid was used to indicate that one part of the mid-edge gradient=velocity
(i.e. the cross-di�usion term) is computed using the traditional edge-based �nite volume
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Figure 4. Mid-edge velocities computed for a CV on the interface between two di�erent
rock types: v�

∗
1

IJL the velocity associated to edge IJL within rock type �1; v
�∗
2

IJL the velocity
associated to edge IJL within rock type �2.

approach by averaging the nodal Green–Gauss gradients, and the other part is computed
using the compact two point �nite di�erence scheme.
Inserting (24) in (25), we can write

v�
∗
R

IJL =−�
˜
�R
IJL

(
∇P�RIJL − (∇P�RIJL · LIJL)LIJL +

(PJL − PI)
|
IJL |

LIJL

)
(26)

Using (22) in (26), we can also write the hybrid mid-edge velocity, as

v�
∗
R

IJL =−�
˜
�R
IJL

(
(∇P�RI +∇P�RJL )

2
−
(
(∇P�RI +∇P�RJL )

2
· LIJL

)
LIJL +

(PJL − PI)
|
IJL |

LIJL

)
(27)

In this work, we have dealt only with isotropic porous media, therefore we have assumed
that �

˜
�R
IJL
= K
˜
�R�IJL , where K

˜
�R = k�R I

˜
, with k�R being constant for each sub-domain �R,

and I
˜
is the identity matrix. The edge values of the scalar mobility terms are approximated

using a mid-point rule in order to formally guarantee second-order accuracy [14, 28], i.e.
�IJL =(�I + �JL)=2 and viscosity is constant under the assumption of incompressible �ow.
Figure 4 shows schematically the mid-edge velocities computed for a CV encompassing

two di�erent materials. Note that for interface edges (e.g. IJL) two independent velocities are
separately computed.
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Now, we can rede�ne (9) using this new mid-edge velocity approximation as

Ndom∑
R=1

( ∑
LI(�R)

v�
∗
R

IJL ·C�RIJL +
∑
LI(�R)

v�IJL ·D�RIJL
)
=QIVI (28)

and Ndom refers to the number of domains that surrounds node I.
Finally, inserting (27) in (28), the discrete pressure equation for a node I, considering the

contributions of a sub-domain �R can be written as

Ndom∑
R=1

[ ∑
LI (�R)

(
−�
˜
�R
IJL

(
(∇P�RI +∇P�RJL )

2
−
(
(∇P�RI +∇P�RJL )

2
· LIJL

)
LIJL+

(PJL−PI)
|
IJL |

LIJL

))
·C�RIJL

]

=QIVI −
Ndom∑
R=1

( ∑
LI (�R)

v�IJL ·D�RIJL
)

(29)

The nodal values ∇P�RI and ∇P�RJL are computed using the expression given by (16). Further,
it is worthy mentioning that the boundary terms in (29) are di�erent from zero only in the
case of non-homogeneous Neumann boundary conditions.
It must be emphasized that the expression above is built in a sub-domain by sub-domain

basis (i.e. looping over sub-domains) in order to formally guarantee that nodal gradients and
velocities are correctly approximated for each material (i.e. rock type) along interface edges.
When (29) is written for all mesh nodes, this approach produces, in general, a non-symmetric
system of equations that is assembled in a sub-domain approach which been solved using a
simple sparse Gauss elimination solver.

3.2. The explicit saturation equation

It is well known that space-centred discretizations, such as Galerkin FE and centred FD,
produce unstable numerical schemes when used to discretize advective terms that characterize
hyperbolic conservation laws (e.g. saturation equation). Besides, the concept of numerical
arti�cial di�usion plays an essential role in attempting to stabilize and to eliminate spurious
oscillations close to discontinuities when these central di�erence-type methods are used [21].
The formulation we have used in the present work was originally proposed by Jameson

et al. [19], with the modi�cations presented in References [20, 21]. This method is based
on the utilization of an adaptive ‘arti�cial viscosity’ term that combines both, second- and
fourth-order dissipative terms. The basic idea of the method is to use the second-order values
in regions of high gradients and to introduce the fourth-order terms only in regions of smooth
gradients in order to stabilize the scheme.
By integrating (6), we can write∫

�
�
@Sw
@t
@�+

∫
�

∇ · Fw(Sw)@�=
∫
�
Qw@� (30)

Using the Green–Gauss theorem, we obtain∫
�
�
@Sw
@t
@�+

∫
�
Fw(Sw) · n@�=

∫
�
Qw@� (31)
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Considering the general case of an inhomogeneous porous media, a semi-discrete numerical
scheme for the solution of the non-linear hyperbolic saturation equation, can be written as

@Sw
@t
=− 1

(�V )avgI

(
Ndom∑
R=1

( ∑
LI (�R)

F�RIJL(w) ·C�RIJL +
∑
LI (�)

F�RIJL(w) ·D�RIJL
)

−QwVI
)

(32)

Where the volume-averaged porosity for a node I is de�ned as

(�V )avgI =
Ndom∑
R=1
��RV�RI (33)

in which ��R refers to the porosity of sub-domain �R, and V�RI is the volume of sub-domain
�R associated to node I.
For a node which do not belong to an interface between multiple sub-domains the volume-

averaged porosity is simply

(�V )avgI =��RV�RI (34)

The boundary �ux computed in (32) is null in general to honour the no-�ux condition at
reservoir boundaries, and the sub-domain mid-edge �ux term F�RIJL(w) ·C�RIJL is replaced by

F�RIJL(w) ·C�RIJL = 1
2(FI(w) + FJL(w)) ·C�RIJL +AD (35)

where AD stands for the ‘arti�cial dissipation’ term, which can be computed as

AD=−�
�R
IJL |C�RIJL |
2

[�(2)IJL
SIJL + �
(4)
IJL (
SIJL − (|
IJL |∇SIJL · LIJL))] (36)

The �ux function F�RIJL(w) over the edge is computed as

F�RIJL(w) =
(fI + fJL)

2
v�

∗
R

IJL (37)

with fI(w) = �I(w)=(�I(o) + �I(w)), and the hybrid mid-edge velocity is consistently obtained
by (27).
The gradient of the saturation on the middle of the edge (∇SIJL) is computed through

a simple arithmetic average as

∇SIJL =
∇SI +∇SJL

2
(38)

and 
SIJL = SJL − SI . The nodal gradients ∇SI and ∇SJL are obtained using a Green–Gauss
reconstruction as described in (15) even for the heterogeneous medium, because in this case,
nodal gradients are not used for �uxes computations associated to material properties. Param-
eters �(2)IJL and �

(4)
IJL are adapted to the �uid �ow condition and are de�ned according to

�(2)IJL = �
(2) max(�I ;�JL)

�(4)IJL =max(0; �
(4) − �(2)IJL)

(39)
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with

�I =
|SJL − 2SI + SIL |

(1− �)(|SJL − SI |+ |SI − SIL |) + �(SJL + 2SI + SIL) + �
(40)

In (39) and (40), �(2) and �(4) and the weighting coe�cient � (06 �6 1) are user-speci�ed
coe�cients, and � is a small constant used only to avoid the appearance of zero in the
denominator. In the present paper, we have adopted �(2) = 1:1, �(4) = 0:85, �=0 and �=10−6.
The factor �I is a sensor designed to detect discontinuities. For the scaling parameter �IJL ,
we have used the following product: |v�∗

R
IJL ||
fIJL=
SIJL | with 
fIJL=
SIJL =(fJL −fI)=(SJL −

SI), when SJL �= SI , and 
fIJL=
SIJL =0:0 otherwise, even though other choices could be used
[21]. Finally, SIL is the value of the saturation, obtained through a gradient reconstruction
along the edge IJL, on a ghost node IL distant |
IJL | to the left from node I. For further
details see References [20, 21]. Equation (40) was built in such a way that �I is signi�cant
only in regions of strong gradients in order to reduce local oscillations. To preserve the
second order of accuracy of the scheme in smooth regions of the �ow, and to control the
amount of arti�cial di�usion to be added, the fourth-order dissipation term is turned o� (i.e.
�(4)IJL ≡ 0) in the presence of strong gradients, while the second-order di�erence factor �(2)IJL is
activated. This is an important feature because only the second-order term is desired near the
�ow discontinuity and the fourth-order term must be avoided as it may produce undesirable
oscillations.
It is worthy noting that, again, �uxes calculations must be done in a sub-domain by sub-

domain basis as described previously for the implicit pressure equation.
After the �uxes are properly calculated, time integration is performed through a simple

two-level explicit time step scheme (Euler forward), i.e.

Sn+1w = Snw − 
t
(�V )avgI

(
Ndom∑
R=1

(∑
LI(�)
F�RIJL(w) ·C�RIJL

)
−QwVI

)
(41)

with F�RIJL(w) being computed by (35)–(40).
Even though second-order time accuracy is, in general, less important than second-order

spatial accuracy as pointed by Durlofsky [13], higher order accurate time integration of the
saturation equation can be simply achieved by using a predictor–corrector method or the
Runge–Kutta procedure [21].

4. EXAMPLES

4.1. Solution of the elliptic pressure equation in non-homogeneous domains

The problems analysed in this example were adapted from Reference [28] in order to show
that the edge-based scheme presented here is capable of handling discontinuous materials even
for very coarse meshes. Here, we will consider the solution of the simplest elliptic equation
∇(K
˜

∇P)=0, where K
˜
= k I

˜
and k is a scalar discontinuous coe�cient.

In Reference [28], the authors adopted a di�erent method for handling heterogeneities,
in which permeabilities are directly associated to the edges of the meshes in two steps.
First, they are associated to nodes using a volume average procedure, and then, their values
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are simply assigned to edges through the arithmetic mean of the correspondent edge node
values. Even though, we consider it a valid approximation procedure, we believe our method
of evaluating �uxes for CV lying over material discontinuities has a more solid physical
background, as the �uxes=velocities at the CV faces, which are used for volumetric balance,
are exactly computed in the case of a linear variation of the pressure �eld.

(a) Initially, we consider a 1× 1 square domain, which is split horizontally in two equally
spaced parts as shown in Figure 5. The non-dimensional di�usive parameters (i.e.
permeabilities) are K

˜ A
=10:0I

˜
for sub-domain A, and K

˜ B
=50:0I

˜
for sub-domain

B. Boundary conditions are PB =1:0 on the bottom of the domain and PT =0:0 on
the top of the domain. Homogeneous Neumann boundary conditions are set on the
left- and right-hand sides of the domain. Figure 6 shows the extremely coarse tri-
angular mesh adopted and the contours for the scalar variable P. The exact solu-
tion for the pressure at y=0:5 is P=1=6, while exact calculated velocities for sub-
domains A and B are v=−k(@P=@y)analytic = 100=6 [28]. The maximum relative errors
Erel = max |uexat − uaprox|=|uexat|, with u=P and u= v, are equal to Epressurerel

∼=83:501%
for interface nodes and Evelocityrel

∼=51:041% for velocities computed at the CV faces
using the procedure described in Reference [28].
On the other hand, in our procedure, numerical solutions for both, P and v (e.g.

pressures and velocities) computed at the CV faces, are exact to machine precision.
(b) In the second problem, the domain is partitioned vertically in two, as shown in

Figure 7. Boundary conditions and the permeabilities are the same of the previous ex-
ample, i.e. PB =1:0, PT =0:0, K

˜ A
=10:0I

˜
and K

˜ B
=50:0I

˜
. In this case, the analytical

solution for nodal pressures at y=0:5, is P=0:5. The exact velocities for sub-domains
A and B are vA =−k(@P=@y)analytic = 10:0 and vB =−k(@P=@y)analytic = 50:0, respectively
[28]. In this case, the relative errors for the nodal pressure �eld and velocities at the
CV faces computed using the procedure given in Reference [28] are, respectively,
Epressurerel

∼=7:838% and Evelocityrel
∼=3:839%. Again, in our procedure, numerical solutions

for pressures and velocities are obtained exactly. Figure 8 shows the triangular mesh
adopted and the contours for the pressure P.

In the two cases shown above, it is clear that our procedure to calculate �uxes=velocities for
discontinuous materials is far superior to the volume average procedure proposed in Reference
[28], which has produced very poor results for the coarse meshes considered here.

4.2. Con�ned �ow between two perpendicular barriers

In this problem, water is injected in the left-hand side of the domain in order to sweep the
resident oil. The geometry was obtained from Garcia [29]. The �uid �ow occurs due to the
di�erence of pressure in the con�ned region that has two perpendicular barriers with extremely
low permeability zones. Fluid properties are: �w =�o = 1000 kg=m3, �w =0:001 kg=m s and
�o = 0:004 kg=m s. Permeability inside the barriers is K

˜
= 10−10 and 10−4 I

˜
m2 in the rest of

the domain, in such a way that permeability varies six orders of magnitude from the barriers
to the rest of the reservoir and therefore, these barriers form a channel in which �uid must
preferentially �ow.
Porosity is �=0:2 in the barriers and �=0:35 in the rest of the domain. In this example, we

have used a quadratic relative permeability relationship [30]. The water and the oil residual
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Figure 5. Square horizontally split domain made of two di�erent materials.

Figure 6. Square horizontally split domain made of two di�erent materials: triangular mesh used to
discretize the domain and the contours for the scalar variable P.

saturations are Swr = Sor = 0:1. Boundary conditions for the pressure and for the saturation
equations are PL=5:103 Pa and SwL=0:9 on the left side and PR=1:103 Pa on the right-hand
side of the domain. A coarse mesh with 156 nodes, 266 elements and 421 edges was used.
Figure 9 shows the geometric con�guration of this problem. Figures 10 and 11 show the
mesh and the pressure surface contour (i.e. pressure �eld ‘extruded’ along Z-axis) for instant
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Figure 7. Square vertically split domain made of two di�erent materials.

Figure 8. Square vertically split domain made of two di�erent materials: triangular mesh used to
discretize the domain and the contours for the scalar variable P.

t=28 days. Figures 12 and 13 show the saturation contours for instants t=28 and 48 days.
The time step was �xed, with 
t=0:2 days.
Figure 11 clearly shows the steep behaviour of the pressure �eld following the sudden

variation of permeability that exists between the barriers and the rest of the reservoir. As
expected, Figures 12 and 13 show that the �uid �ow occurs essentially though the channel
formed by the perpendicular barriers.
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Figure 9. Geometric con�guration for the problem of the con�ned �ow
between two perpendiculars barriers.

Figure 10. Con�ned �ow between two perpendiculars barriers:
triangular mesh with 156 nodes and 266 elements.

4.3. Five-spot water �ood problem with a central low permeability zone

This problem, which was adapted from Helmig [30], consists in a 1
4 of �ve-spot problem

in which there is a square low permeability zone between the injection and producer wells.
In this case, the low permeability zone forms a barrier that splits the �uid �ow in two
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Figure 11. Con�ned �ow between two perpendiculars barriers: pressure surface at t=28 days.

Figure 12. Con�ned �ow between two perpendiculars barriers: saturation contours at t=28 days.
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Figure 13. Con�ned �ow between two perpendiculars barriers: saturation contours at t=48 days.

Figure 14. Geometric con�guration for the problem of 1
4 of �ve spot with

a central low permeability zone.

parts. Residual saturations are Srw = Sro = 0:0 and �uid properties are �w =�o = 1000 kg=m3

and �w =�o = 0:001 kg=m s. Permeability ratio is equal to 1000 with K
˜ 1
= 10−10 I

˜
m2 in zone

1, and K
˜ 2
= 10−7 I

˜
m2 in zone 2. Porosity is constant with �=0:2 for both zones. Figure 14
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Figure 15. 1
4 of �ve spot with a central low permeability zone:

coarse mesh with 308 nodes and 550 elements.

Figure 16. 1
4 of �ve spot with a central low permeability zone:

�ne mesh with 1180 nodes and 2230 elements.

shows the geometric con�guration of the problem. Pressure and saturation boundary conditions
are, p=2:105 Pa and Sw =1 at the injection well and Q=−10:368 m3=d at the producer.
For this problem we have used two di�erent meshes. Figures 15 and 16 show, respectively,

the coarse mesh, in which the mesh spacing is approximately h∼=18:75 m, with 308 nodes,
550 elements and 857 edges, and the �ne mesh for which h∼=9:375m, with 1180 nodes, 2230
elements and 3409 edges. Figures 17 and 18, which are in very good agreement with those
of Helmig [30], show the saturation pro�le for both meshes at t=400 days. As it can be
seen, the coarse mesh is able to correctly capture the saturation front, even though results are
a little bit more di�usive than in the �ne mesh.
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Figure 17. 1
4 of �ve spot with a central low permeability zone:

saturation contours for the coarse mesh at t=400 days.

Figure 18. 1
4 of �ve spot with a central low permeability zone:

saturation contours for the �ne mesh at t=400 days.
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5. CONCLUDING REMARKS

In this article, we have described an unstructured edge-based �nite volume formulation for the
solution of immiscible displacement of oil by water within non-homogeneous porous media.
This FV formulation is capable of handling highly discontinuous coe�cients in an elegant
and accurate manner. Some representative model examples were used in order to show the
ability of the proposed method to deal with discontinuous permeability �elds that vary orders
of magnitude throughout the reservoir formation. The arti�cial di�usion method used here for
the solution of the saturation equation is capable of capturing water saturation fronts very
accurately even for coarse meshes. Currently, we are investigating the ability of the proposed
formulation to properly handle anisotropic permeability �elds (full tensors) and problems with
high mobility ratios. In the near future, we intend to extend this methodology to deal with
more realistic problems including gravity and capillary e�ects in two- and three-dimensional
domains.
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